

East Building, Ballroom BC

nvidia.com/siggraph2018

Machine Learning and Rendering

Alex Keller, Director of Research

Machine Learning and Rendering

Course web page at https://sites.google.com/site/mlandrendering/

- 14:00 From Machine Learning to Graphics and back
 - Alexander Keller, NVIDIA
- 14:40 Robust & Efficient Light Transport by Machine Learning
 - Jaroslav Křivánek, Charles University, Prague
- 15:15 Deep Learning for Light Transport Simulation
 - Jan Novàk, Disney Research
- 16:05 Neural Realtime Rendering in Image Space
 - Anton Kaplanyan, Facebook Reality Labs
- 16:40 Deep Realtime Rendering
 - Marco Salvi, NVIDIA

Light transport simulation

• ways to formulate the radiance *L_r* reflected in a surface point *x*

$$= \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

Light transport simulation

• ways to formulate the radiance *L_r* reflected in a surface point *x*

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$
$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

Light transport simulation

• ways to formulate the radiance *L_r* reflected in a surface point *x*

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \int_{\partial V} \int_{\partial V} V(x',y) \delta_{x}(x') L_{i}(x',\omega) f_{r}(\omega_{r},x',\omega) \cos \theta_{x'} \frac{\cos \theta_{y}}{|x'-y|^{2}} dx' dy$$

Light transport simulation

• ways to formulate the radiance *L_r* reflected in a surface point *x*

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \int_{\partial V} \int_{\partial V} V(x',y) \left(\lim_{r(x)\to 0} \frac{\chi_{B}(x-x')}{\pi r(x)^{2}}\right) L_{i}(x',\omega) f_{r}(\omega_{r}, x', \omega) \cos \theta_{x'} \frac{\cos \theta_{y}}{|x'-y|^{2}} dx' dy$$

L

Light transport simulation

ways to formulate the radiance L_r reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\partial V} V(x',y) \frac{\chi_{B}(x-x')}{\pi r(x)^{2}} L_{i}(x',\omega) f_{r}(\omega_{r},x',\omega) \cos \theta_{y} \frac{\cos \theta_{x'}}{|x'-y|^{2}} dx' dy$$

Light transport simulation

ways to formulate the radiance L_r reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}^{2}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}} L_{i}(h(y,\omega),\omega) f_{r}(\omega_{r},h(y,\omega),\omega) \cos \theta_{y} d\omega dy$$

Light transport simulation

• ways to formulate the radiance L_r reflected in a surface point x

is to formulate the radiance
$$L_r$$
 reflected in a surface point x

$$L_r(x, \omega_r)$$

$$= \int_{\mathscr{S}^2(x)} L_i(x, \omega) f_r(\omega_r, x, \omega) \cos \theta_x d\omega$$

$$= \int_{\partial V} V(x, y) L_i(x, \omega) f_r(\omega_r, x, \omega) \cos \theta_x \frac{\cos \theta_y}{|x - y|^2} dy$$

$$= \lim_{r(x) \to 0} \int_{\partial V} \int_{\mathscr{S}^2(y)} \frac{\chi_B(x - h(y, \omega))}{\pi r(x)^2} L_i(h(y, \omega), \omega) f_r(\omega_r, h(y, \omega), \omega) \cos \theta_y d\omega dy$$

$$= \int_{\mathscr{S}^2(x)} L_i(x, \omega) f_r(\omega_r, x, \omega) \cos \theta_x d\omega$$

Light transport simulation

ways to formulate the radiance L_r reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega)f_{r}(\omega_{r},x,\omega)\cos\theta_{x}d\omega$$

$$= \int_{\partial V} V(x,y)L_{i}(x,\omega)f_{r}(\omega_{r},x,\omega)\cos\theta_{x}\frac{\cos\theta_{y}}{|x-y|^{2}}dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}_{-}^{2}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}}L_{i}(h(y,\omega),\omega)f_{r}(\omega_{r},h(y,\omega),\omega)\cos\theta_{y}d\omega dy$$

$$= \int_{\mathscr{S}_{-}^{2}(x)} \left(\lim_{r(x)\to 0} \frac{\int_{B(x)} w(x,x')L_{i}(x',\omega)dx'}{\int_{B(x)} w(x,x')dx'}\right)f_{r}(\omega_{r},x,\omega)\cos\theta_{x}d\omega$$

Light transport simulation

ways to formulate the radiance L_r reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}_{-}^{2}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}} L_{i}(h(y,\omega),\omega) f_{r}(\omega_{r},h(y,\omega),\omega) \cos \theta_{y} d\omega dy$$

$$= \lim_{r(x)\to 0} \int_{\mathscr{S}_{-}^{2}(x)} \frac{\int_{B(x)} w(x,x') L_{i}(x',\omega) dx'}{\int_{B(x)} w(x,x') dx'} f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

- path tracing: Starting paths from camera and iterating scattering and ray tracing
 - bad for small light sources, good for large light sources

- path tracing with next event estimation by shadow rays (dashed lines)
 - good for small light sources, bad for close light sources

- light tracing, i.e. paths starting from the light source connected to the camera
 - can capture some caustics, where path tracing and next event estimation do not work

- all obvious ways to generate light transport paths
 - which ones are good ?

Light transport simulation

- bidirectional path tracing, optimally combining all techniques by weighting each contribution

-
$$\sum_{i=0}^{l} w_{l,i} = 1$$
 for path length $l-1, l \in \mathbb{N}$

Light transport simulation

bidirectional path tracing, optimally combining all techniques by weighting each contribution

-
$$\sum_{i=0}^{l} w_{l,i} = 1$$
 for path length $l-1, l \in \mathbb{N}$

• problem of insufficient techniques, for example, if only one $w_{l,i} \neq 0$

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx$$

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x_i
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x_i
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Pushbutton paradigm

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize

Pushbutton paradigm

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize
- unbiased
 - zero difference between expectation and mathematical object
 - not sufficient for convergence

Pushbutton paradigm

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize
- biased
 - allows for ameliorating the problem of insufficient techniques
 - can tremendously increase efficiency

Pushbutton paradigm

- deterministic
 - may improve speed of convergence
 - reproducible and simple to parallelize
- biased
 - allows for ameliorating the problem of insufficient techniques
 - can tremendously increase efficiency
- consistent
 - error vanishes with increasing set of samples
 - no persistent artifacts introduced by algorithm

Quasi-Monte Carlo image synthesis in a nutshell

The Iray light transport simulation and rendering system

Pushbutton paradigm

deterministic

- may improve speed of convergence
- reproducible and simple to parallelize

biased

- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency

consistent

- error vanishes with increasing set of samples
- no persistent artifacts introduced by algorithm

Quasi-Monte Carlo image synthesis in a nutshell

The Iray light transport simulation and rendering system

Reconstruction from noisy input: Massively parallel path space filtering (link)

From Machine Learning to Graphics
Machine Learning

Taxonomy

- unsupervised learning from unlabeled data
 - examples: clustering, auto-encoder networks

Machine Learning

Taxonomy

- unsupervised learning from unlabeled data
 - examples: clustering, auto-encoder networks
- semi-supervised learning by rewards
 - example: reinforcement learning

Machine Learning

Taxonomy

- unsupervised learning from unlabeled data
 - examples: clustering, auto-encoder networks
- semi-supervised learning by rewards
 - example: reinforcement learning

- supervised learning from labeled data
 - examples: support vector machines, decision trees, artificial neural networks

Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$

Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$

- learn a policy π_t
 - to select an action $a_t \in \mathbb{A}(s_t)$
 - given the current state $s_t \in \mathbb{S}$

Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$

- learn a policy π_t
 - to select an action $a_t \in \mathbb{A}(s_t)$
 - given the current state $s_t \in \mathbb{S}$

maximizing the discounted cumulative reward

$$V(s_t) \equiv \sum_{k=0}^{\infty} \gamma^k \cdot r_{t+1+k} (a_{t+k} \mid s_{t+k}), ext{ where } 0 < \gamma < 1$$

Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$ for a learning rate $\alpha \in [0,1]$

Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$ for a learning rate $\alpha \in [0,1]$

with the following options for the discounted cumulative reward

$$V(s') \equiv \begin{cases} \max_{a' \in \mathbb{A}} Q(s', a') & \text{consider best action in next state } s' \\ \end{cases}$$

Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$ for a learning rate $\alpha \in [0,1]$

with the following options for the discounted cumulative reward

$$V(s') \equiv \begin{cases} \max_{a' \in \mathbb{A}} Q(s', a') & \text{consider best action in next state } s' \\ \sum_{a' \in \mathbb{A}} \pi(s', a') Q(s', a') & \text{policy weighted average over discrete action space} \end{cases}$$

Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$ for a learning rate $\alpha \in [0,1]$

with the following options for the discounted cumulative reward

$$V(s') \equiv \begin{cases} \max_{a' \in \mathbb{A}} Q(s', a') & \text{consider best action in next state } s' \\ \sum_{a' \in \mathbb{A}} \pi(s', a') Q(s', a') & \text{policy weighted average over discrete action space} \\ \int_{\mathbb{A}} \pi(s', a') Q(s', a') da' & \text{policy weighted average over continuous action space} \end{cases}$$

Maximize reward by learning importance sampling online

radiance integral equation

 $L(x,\omega) = L_e(x,\omega) + \int_{\mathscr{S}^2_+(x)} f_s(\omega_i,x,\omega) \cos \theta_i \quad L(h(x,\omega_i),-\omega_i) \quad d\omega_i$

Maximize reward by learning importance sampling online

Maximize reward by learning importance sampling online

Maximize reward by learning importance sampling online

Maximize reward by learning importance sampling online

Maximize reward by learning importance sampling online

$$\begin{array}{lll} L(x,\omega) & = & L_{e}(x,\omega) & + \int_{\mathscr{S}^{2}_{+}(x)} & f_{s}(\omega_{i},x,\omega)\cos\theta_{i} & L(h(x,\omega_{i}),-\omega_{i}) & d\omega_{i} \\ Q'(s,a) & = (1-\alpha)Q(s,a) + \alpha \left(\begin{array}{cc} r(s,a) & + \gamma \int_{\mathscr{A}} & \pi(s',a') & Q(s',a') & da' \end{array} \right) \end{array}$$

Maximize reward by learning importance sampling online

structural equivalence of integral equation and Q-learning

- graphics example: learning the incident radiance

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\boldsymbol{\theta}}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\boldsymbol{s}}(\omega_i,y,-\omega)\cos\theta_i Q(y,\omega_i)d\omega_i \right)$$

Maximize reward by learning importance sampling online

structural equivalence of integral equation and Q-learning

- graphics example: learning the incident radiance

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^{2}_{+}(y)} f_{s}(\omega_{i},y,-\omega)\cos\theta_{i}Q(y,\omega_{i})d\omega_{i} \right)$$

to be used as a policy for selecting an action ω in state x to reach the next state $y := h(x, \omega)$

- the learning rate α is the only parameter left

Technical Note: Q-Learning

Online algorithm for guiding light transport paths

```
Function pathTrace(camera, scene)
throughput \leftarrow 1
ray ← setupPrimaryRay(camera)
for i \leftarrow 0 to \infty do
      y, n \leftarrow \text{intersect}(scene, ray)
      if isEnvironment(y) then
            return throughput getRadianceFromEnvironment(ray, y)
      else if isAreaLight(y)
            return throughput getRadianceFromAreaLight(ray, y)
      \omega, p_{\omega}, f_s \leftarrow \text{sampleBsdf}(y, n)
      throughput \leftarrow throughput \cdot f_s \cdot \cos(n, \omega) / p_\omega
      ray \leftarrow y, \omega
```


Online algorithm for guiding light transport paths

```
Function pathTrace(camera, scene)
 throughput \leftarrow 1
ray ← setupPrimaryRay(camera)
for i \leftarrow 0 to \infty do
       y, n \leftarrow \text{intersect}(scene, ray)
       if i > 0 then
            Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_e(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_s(\omega_i,y,-\omega)\cos\theta_i Q(y,\omega_i) d\omega_i \right)
       if isEnvironment(v) then
             return throughput · getRadianceFromEnvironment(ray, y)
       else if isAreaLight(y)
             return throughput · getRadianceFromAreaLight(ray, y)
       \omega, p_{\omega}, f_{s} \leftarrow sampleScatteringDirectionProportionalToQ(y)
       throughput \leftarrow throughput \cdot f_s \cdot \cos(n, \omega) / p_{\omega}
       ray \leftarrow y, \omega
```


approximate solution Q stored on discretized hemispheres across scene surface

2048 paths traced with BRDF importance sampling in a scene with challenging visibility

Path tracing with online reinforcement learning at the same number of paths

Metropolis light transport at the same number of paths

Guiding paths to where the value Q comes from

- shorter expected path length
- dramatically reduced number of paths with zero contribution
- very efficient online learning by learning Q from Q

Guiding paths to where the value Q comes from

- shorter expected path length
- dramatically reduced number of paths with zero contribution
- very efficient online learning by learning Q from Q
- directions for research
 - representation of value Q: data structures from games
 - importance sampling proportional to the integrand, i.e. the product of policy $\gamma \cdot \pi$ times value Q

On-line learning of parametric mixture models for light transport simulation

- Product importance sampling for light transport path guiding
 - Fast product importance sampling of environment maps
 - Learning light transport the reinforced way
- Practical path guiding for efficient light-transport simulation

From Graphics back to Machine Learning

Supervised learning of high dimensional function approximation

• input layer a_0 , L-1 hidden layers, and output layer a_L

Supervised learning of high dimensional function approximation

• input layer a_0 , L-1 hidden layers, and output layer a_L

- n_l rectified linear units (ReLU) $a_{l,i} = \max\{0, \sum w_{l,j,i} a_{l-1,j}\}$ in layer l

Supervised learning of high dimensional function approximation

• input layer a_0 , L-1 hidden layers, and output layer a_L

- n_l rectified linear units (ReLU) $a_{l,i} = \max\{0, \sum w_{l,j,i} a_{l-1,j}\}$ in layer l
- backpropagating the error $\delta_{l-1,i} = \sum_{a_{l,j} > 0} \delta_{l,j} w_{l,j,i}$

Supervised learning of high dimensional function approximation

input layer a₀, L-1 hidden layers, and output layer a_L

- n_l rectified linear units (ReLU) $a_{l,i} = \max\{0, \sum w_{l,j,i}a_{l-1,j}\}$ in layer l
- backpropagating the error $\delta_{l-1,i} = \sum_{a_{l,j}>0} \delta_{l,j} w_{l,j,i}$, update weights $w'_{l,j,i} = w_{l,j,i} \lambda \delta_{l,j} a_{l-1,i}$ if $a_{l,j} > 0$

Supervised learning of high dimensional function approximation

example architectures

classifier

Multilayer feedforward networks are universal approximators

> Approximation capabilities of multilayer feedforward networks

> Universal approximation bounds for superpositions of a sigmoidal function

Supervised learning of high dimensional function approximation

example architectures

classifier

generator

- Multilayer feedforward networks are universal approximators
- Approximation capabilities of multilayer feedforward networks
- Universal approximation bounds for superpositions of a sigmoidal function

Supervised learning of high dimensional function approximation

example architectures

classifier

generator

auto-encoder

Multilayer feedforward networks are universal approximators

> Approximation capabilities of multilayer feedforward networks

> Universal approximation bounds for superpositions of a sigmoidal function

Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\theta}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\mathcal{S}}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

for $\alpha = 1$ yields the residual, i.e. loss

$$\Delta Q := Q(x,\omega) - \left(L_{e}(y,-\omega) + \int_{\mathscr{S}^{2}_{+}(y)} f_{\mathcal{S}}(\omega_{i},y,-\omega) \cos \theta_{i} Q(y,\omega_{i}) d\omega_{i} \right)$$

Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^{2}_{+}(y)} f_{\theta}(\omega_{i},y,-\omega) \cos \theta_{i} Q(y,\omega_{i}) d\omega_{i} \right)$$

for $\alpha = 1$ yields the residual, i.e. loss

$$\Delta Q := Q(x,\omega) - \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\mathcal{S}}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

- supervised learning algorithm
 - light transport paths generated by a low discrepancy sequence for online training

Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\theta}(\omega_i, y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

for $\alpha = 1$ yields the residual, i.e. loss

$$\Delta Q := Q(x,\omega) - \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\mathcal{S}}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

- supervised learning algorithm
 - light transport paths generated by a low discrepancy sequence for online training
 - learn weights of an artificial neural network for Q(x, n) by back-propagating loss of each path

A machine learning driven sky model

Global illumination with radiance regression Functions

- Machine learning and integral equations
 - Neural importance sampling

Learning from noisy/sampled labeled data

- find set of weights θ of an artificial neural network f to minimize summed loss L
 - using clean targets y_i and data \hat{x}_i distributed according to $\hat{x} \sim p(\hat{x}|y_i)$

 $\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), y_{i})$

Learning from noisy/sampled labeled data

- find set of weights θ of an artificial neural network f to minimize summed loss L
 - using clean targets y_i and data \hat{x}_i distributed according to $\hat{x} \sim p(\hat{x}|y_i)$

 $\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), y_{i})$

- using targets \hat{y}_i distributed according to $\hat{y} \sim p(\hat{y})$ instead

$$\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), \hat{y}_{i})$$

Learning from noisy/sampled labeled data

- find set of weights θ of an artificial neural network f to minimize summed loss L
 - using clean targets y_i and data \hat{x}_i distributed according to $\hat{x} \sim p(\hat{x}|y_i)$

 $\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), y_{i})$

- using targets \hat{y}_i distributed according to $\hat{y} \sim p(\hat{y})$ instead $\operatorname{argmin}_{\theta} \sum_i L(f_{\theta}(\hat{x}_i), \hat{y}_i)$
 - · allows for much faster training of artificial neural networks used in simulations
- amounts to learning integration and integro-approximation

Noise2Noise: Learning image restoration without clean data

Example Applications of Artificial Neural Networks in Rendering

Learning from noisy/sampled labeled data

denoising quasi-Monte Carlo rendered images

(a) Input (64 spp), 23.93 dB

(b) Noisy targets, 32.42 dB

(c) Clean targets, 32.95 dB

(d) Reference (131k spp)

- noisy targets computed 2000× faster than clean targets

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

generative adversarial network (GAN)

generative adversarial network (GAN)

generative adversarial network (GAN)

- generative adversarial network (GAN)
 - update generator G using $\nabla_{\theta_{\alpha}} \sum_{i=1}^{m} \log(1 D(G(\xi_i)))$

- generative adversarial network (GAN)
 - update discriminator D (k times) using $\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m [\log D(x_i) + \log(1 D(G(\xi_i)))]$
 - update generator G using

 $abla_{ heta_g} \sum_{i=1}^m \log(1 - D(G(\xi_i)))$

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

Celebrity GAN

Progressive growing of GANs for improved quality, stability, and variation

Example Applications of Artificial Neural Networks in Rendering

Replacing simulations by learned predictions for more efficiency

- much faster simulation of participating media
 - hierarchical stencil of volume densities as input to the neural network

Deep scattering: Rendering atmospheric clouds with radiance-predicting neural networks
Learning particle physics by example: Accelerating science with generative adversarial networks

Complexity

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others

Complexity

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others
- artificial neural networks
 - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where n_l is the number of neurons in layer l

Complexity

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others
- artificial neural networks
 - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where n_l is the number of neurons in layer l

- number of weights

$$n_w = \sum_{l=1}^L n_{l-1} \cdot n_l$$

Complexity

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others
- artificial neural networks
 - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where n_l is the number of neurons in layer l

- number of weights

$$n_w = \sum_{l=1}^L c \cdot n_l$$

- constrain to constant number c of weights per neuron

Complexity

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others
- artificial neural networks
 - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where n_l is the number of neurons in layer l

- number of weights

$$n_w = \sum_{l=1}^L c \cdot n_l = c \cdot n$$

- constrain to constant number c of weights per neuron to reach complexity linear in n

Sampling proportional to the weights of the trained neural units

• partition of unit interval by sums $P_k := \sum_{j=1}^k |w_j|$ of normalized absolute weights

Sampling proportional to the weights of the trained neural units

• partition of unit interval by sums $P_k := \sum_{j=1}^k |w_j|$ of normalized absolute weights

$$\begin{array}{cccc} 0 & W_1 & W_2 & & \\ \hline P_0 & P_1 & P_2 & & \hline P_{m-1} & P_m \end{array}$$

- using a uniform random variable $\xi \in [0,1)$ to

select input $i \Leftrightarrow P_{i-1} \leq \xi < P_i$ satisfying $\operatorname{Prob}(\{P_{i-1} \leq \xi < P_i\}) = |w_i|$

Sampling proportional to the weights of the trained neural units

• partition of unit interval by sums $P_k := \sum_{j=1}^k |w_j|$ of normalized absolute weights

$$\underbrace{\begin{array}{ccc} 0 & W_1 & W_2 \\ P_0 & P_1 & P_2 \end{array}}_{W_m - 1} \underbrace{\begin{array}{ccc} W_m & 1 \\ P_{m-1} & P_m \end{array}}_{W_m - 1}$$

- using a uniform random variable $\xi \in [0,1)$ to

select input $i \Leftrightarrow P_{i-1} \leq \xi < P_i$ satisfying $\operatorname{Prob}(\{P_{i-1} \leq \xi < P_i\}) = |w_i|$

- in fact derivation of quantization to ternary weights in {-1,0,+1}
 - integer weights result from neurons referenced more than once
 - relation to drop connect and drop out

Sampling proportional to the weights of the trained neural units

Percent of fully connected layers sampled

Sampling paths through networks

• complexity bounded by number of paths times depth *L* of network

Sampling paths through networks

- complexity bounded by number of paths times depth *L* of network
- application after training
 - backwards random walks using sampling proportional to the weights of a neuron
 - compression and quantization by importance sampling

Sampling paths through networks

- complexity bounded by number of paths times depth L of network
- application after training
 - backwards random walks using sampling proportional to the weights of a neuron
 - compression and quantization by importance sampling
- application before training
 - uniform (bidirectional) random walks to connect inputs and outputs
 - sparse from scratch

Sampling paths through networks

sparse from scratch

Sampling paths through networks

sparse from scratch

Sampling paths through networks

sparse from scratch

- guaranteed connectivity

Sampling paths through networks

sparse from scratch

- guaranteed connectivity

Sampling paths through networks

sparse from scratch

⁻ guaranteed connectivity

Sampling paths through networks

sparse from scratch

⁻ guaranteed connectivity

Sampling paths through networks

sparse from scratch

- guaranteed connectivity and coverage

Test accuracy for 4 layer feedforward network (784/300/300/10) trained sparse from scratch

From Machine Learning to Graphics and back

Summary

- light transport and reinforcement learning described by same integral equation
 - learn where radiance comes from
- neural networks results of linear complexity by path tracing
 - ternarization and quantization of trained artificial neural networks
 - sparse from scratch training

