

East Building, Ballroom BC

nvidia.com/siggraph2018

# **Machine Learning and Rendering**

Alex Keller, Director of Research

## **Machine Learning and Rendering**

#### Course web page at https://sites.google.com/site/mlandrendering/

- 14:00 From Machine Learning to Graphics and back
  - Alexander Keller, NVIDIA
- 14:40 Robust & Efficient Light Transport by Machine Learning
  - Jaroslav Křivánek, Charles University, Prague
- 15:15 Deep Learning for Light Transport Simulation
  - Jan Novàk, Disney Research
- 16:05 Neural Realtime Rendering in Image Space
  - Anton Kaplanyan, Facebook Reality Labs
- 16:40 Deep Realtime Rendering
  - Marco Salvi, NVIDIA



Light transport simulation

• ways to formulate the radiance *L<sub>r</sub>* reflected in a surface point *x* 

$$= \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$





Light transport simulation

• ways to formulate the radiance *L<sub>r</sub>* reflected in a surface point *x* 

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$
$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$





Light transport simulation

• ways to formulate the radiance *L<sub>r</sub>* reflected in a surface point *x* 

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \int_{\partial V} \int_{\partial V} V(x',y) \delta_{x}(x') L_{i}(x',\omega) f_{r}(\omega_{r},x',\omega) \cos \theta_{x'} \frac{\cos \theta_{y}}{|x'-y|^{2}} dx' dy$$



Light transport simulation

• ways to formulate the radiance *L<sub>r</sub>* reflected in a surface point *x* 

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}_{-}(x)} L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$
  

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$
  

$$= \int_{\partial V} \int_{\partial V} V(x',y) \left(\lim_{r(x)\to 0} \frac{\chi_{B}(x-x')}{\pi r(x)^{2}}\right) L_{i}(x',\omega) f_{r}(\omega_{r}, x', \omega) \cos \theta_{x'} \frac{\cos \theta_{y}}{|x'-y|^{2}} dx' dy$$



L

Light transport simulation

ways to formulate the radiance L<sub>r</sub> reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$
  

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$
  

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\partial V} V(x',y) \frac{\chi_{B}(x-x')}{\pi r(x)^{2}} L_{i}(x',\omega) f_{r}(\omega_{r},x',\omega) \cos \theta_{y} \frac{\cos \theta_{x'}}{|x'-y|^{2}} dx' dy$$



Light transport simulation

ways to formulate the radiance L<sub>r</sub> reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} d\omega$$
  

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r}, x, \omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$
  

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}^{2}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}} L_{i}(h(y,\omega),\omega) f_{r}(\omega_{r},h(y,\omega),\omega) \cos \theta_{y} d\omega dy$$



Light transport simulation

• ways to formulate the radiance  $L_r$  reflected in a surface point x

is to formulate the radiance 
$$L_r$$
 reflected in a surface point  $x$   

$$L_r(x, \omega_r)$$

$$= \int_{\mathscr{S}^2(x)} L_i(x, \omega) f_r(\omega_r, x, \omega) \cos \theta_x d\omega$$

$$= \int_{\partial V} V(x, y) L_i(x, \omega) f_r(\omega_r, x, \omega) \cos \theta_x \frac{\cos \theta_y}{|x - y|^2} dy$$

$$= \lim_{r(x) \to 0} \int_{\partial V} \int_{\mathscr{S}^2(y)} \frac{\chi_B(x - h(y, \omega))}{\pi r(x)^2} L_i(h(y, \omega), \omega) f_r(\omega_r, h(y, \omega), \omega) \cos \theta_y d\omega dy$$

$$= \int_{\mathscr{S}^2(x)} L_i(x, \omega) f_r(\omega_r, x, \omega) \cos \theta_x d\omega$$



Light transport simulation

ways to formulate the radiance L<sub>r</sub> reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega)f_{r}(\omega_{r},x,\omega)\cos\theta_{x}d\omega$$

$$= \int_{\partial V} V(x,y)L_{i}(x,\omega)f_{r}(\omega_{r},x,\omega)\cos\theta_{x}\frac{\cos\theta_{y}}{|x-y|^{2}}dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}_{-}^{2}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}}L_{i}(h(y,\omega),\omega)f_{r}(\omega_{r},h(y,\omega),\omega)\cos\theta_{y}d\omega dy$$

$$= \int_{\mathscr{S}_{-}^{2}(x)} \left(\lim_{r(x)\to 0} \frac{\int_{B(x)} w(x,x')L_{i}(x',\omega)dx'}{\int_{B(x)} w(x,x')dx'}\right)f_{r}(\omega_{r},x,\omega)\cos\theta_{x}d\omega$$



Light transport simulation

ways to formulate the radiance L<sub>r</sub> reflected in a surface point x

$$L_{r}(x,\omega_{r}) = \int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$

$$= \int_{\partial V} V(x,y) L_{i}(x,\omega) f_{r}(\omega_{r},x,\omega) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} dy$$

$$= \lim_{r(x)\to 0} \int_{\partial V} \int_{\mathscr{S}_{-}^{2}(y)} \frac{\chi_{B}(x-h(y,\omega))}{\pi r(x)^{2}} L_{i}(h(y,\omega),\omega) f_{r}(\omega_{r},h(y,\omega),\omega) \cos \theta_{y} d\omega dy$$

$$= \lim_{r(x)\to 0} \int_{\mathscr{S}_{-}^{2}(x)} \frac{\int_{B(x)} w(x,x') L_{i}(x',\omega) dx'}{\int_{B(x)} w(x,x') dx'} f_{r}(\omega_{r},x,\omega) \cos \theta_{x} d\omega$$



- path tracing: Starting paths from camera and iterating scattering and ray tracing
  - bad for small light sources, good for large light sources





- path tracing with next event estimation by shadow rays (dashed lines)
  - good for small light sources, bad for close light sources





- light tracing, i.e. paths starting from the light source connected to the camera
  - can capture some caustics, where path tracing and next event estimation do not work







- all obvious ways to generate light transport paths
  - which ones are good ?











#### Light transport simulation

- bidirectional path tracing, optimally combining all techniques by weighting each contribution

- 
$$\sum_{i=0}^{l} w_{l,i} = 1$$
 for path length  $l-1, l \in \mathbb{N}$ 



#### Light transport simulation

bidirectional path tracing, optimally combining all techniques by weighting each contribution

- 
$$\sum_{i=0}^{l} w_{l,i} = 1$$
 for path length  $l-1, l \in \mathbb{N}$ 



• problem of insufficient techniques, for example, if only one  $w_{l,i} \neq 0$ 

**Numerical integro-approximation** 

$$g(y) = \int_{[0,1)^s} f(y,x) dx$$



#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers





#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers





#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers





#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers





#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers





#### **Numerical integro-approximation**

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$





#### **Numerical integro-approximation**

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x<sub>i</sub>
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples





#### **Numerical integro-approximation**

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x<sub>i</sub>
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples







#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x<sub>i</sub>
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples







#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x<sub>i</sub>
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples







#### Numerical integro-approximation

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- uniform, independent, unpredictable random samples x<sub>i</sub>
- simulated by pseudo-random numbers
- quasi-Monte Carlo methods

$$g(y) = \int_{[0,1)^s} f(y,x) dx \approx \frac{1}{n} \sum_{i=1}^n f(y,x_i)$$

- much more uniform correlated samples x<sub>i</sub>
- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples







## **Pushbutton paradigm**

- deterministic
  - may improve speed of convergence
  - reproducible and simple to parallelize



#### **Pushbutton paradigm**

- deterministic
  - may improve speed of convergence
  - reproducible and simple to parallelize
- unbiased
  - zero difference between expectation and mathematical object
  - not sufficient for convergence



#### **Pushbutton paradigm**

- deterministic
  - may improve speed of convergence
  - reproducible and simple to parallelize
- biased
  - allows for ameliorating the problem of insufficient techniques
  - can tremendously increase efficiency



#### **Pushbutton paradigm**

- deterministic
  - may improve speed of convergence
  - reproducible and simple to parallelize
- biased
  - allows for ameliorating the problem of insufficient techniques
  - can tremendously increase efficiency
- consistent
  - error vanishes with increasing set of samples
  - no persistent artifacts introduced by algorithm

Quasi-Monte Carlo image synthesis in a nutshell

The Iray light transport simulation and rendering system



#### **Pushbutton paradigm**

#### deterministic

- may improve speed of convergence
- reproducible and simple to parallelize

#### biased

- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency

#### consistent

- error vanishes with increasing set of samples
- no persistent artifacts introduced by algorithm

Quasi-Monte Carlo image synthesis in a nutshell

The Iray light transport simulation and rendering system





Reconstruction from noisy input: Massively parallel path space filtering (link)

# From Machine Learning to Graphics
# **Machine Learning**

#### Taxonomy

- unsupervised learning from unlabeled data
  - examples: clustering, auto-encoder networks



# Machine Learning

#### Taxonomy

- unsupervised learning from unlabeled data
  - examples: clustering, auto-encoder networks
- semi-supervised learning by rewards
  - example: reinforcement learning



# **Machine Learning**

#### Taxonomy

- unsupervised learning from unlabeled data
  - examples: clustering, auto-encoder networks
- semi-supervised learning by rewards
  - example: reinforcement learning

- supervised learning from labeled data
  - examples: support vector machines, decision trees, artificial neural networks



#### Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$ 





#### Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$ 

- learn a policy  $\pi_t$ 
  - to select an action  $a_t \in \mathbb{A}(s_t)$
  - given the current state  $s_t \in \mathbb{S}$





#### Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$ 

- learn a policy  $\pi_t$ 
  - to select an action  $a_t \in \mathbb{A}(s_t)$
  - given the current state  $s_t \in \mathbb{S}$



maximizing the discounted cumulative reward

$$V(s_t) \equiv \sum_{k=0}^{\infty} \gamma^k \cdot r_{t+1+k} (a_{t+k} \mid s_{t+k}), ext{ where } 0 < \gamma < 1$$



Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$  for a learning rate  $\alpha \in [0,1]$ 



Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$  for a learning rate  $\alpha \in [0,1]$ 

with the following options for the discounted cumulative reward

$$V(s') \equiv \begin{cases} \max_{a' \in \mathbb{A}} Q(s', a') & \text{consider best action in next state } s' \\ \end{cases}$$



Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$  for a learning rate  $\alpha \in [0,1]$ 

with the following options for the discounted cumulative reward

$$V(s') \equiv \begin{cases} \max_{a' \in \mathbb{A}} Q(s', a') & \text{consider best action in next state } s' \\ \sum_{a' \in \mathbb{A}} \pi(s', a') Q(s', a') & \text{policy weighted average over discrete action space} \end{cases}$$



Q-Learning [Watkins 1989]

Iearns optimal action selection policy for any given Markov decision process

 $Q'(s,a) = (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r(s,a) + \gamma \cdot V(s'))$  for a learning rate  $\alpha \in [0,1]$ 

with the following options for the discounted cumulative reward

$$V(s') \equiv \begin{cases} \max_{a' \in \mathbb{A}} Q(s', a') & \text{consider best action in next state } s' \\ \sum_{a' \in \mathbb{A}} \pi(s', a') Q(s', a') & \text{policy weighted average over discrete action space} \\ \int_{\mathbb{A}} \pi(s', a') Q(s', a') da' & \text{policy weighted average over continuous action space} \end{cases}$$



Maximize reward by learning importance sampling online

radiance integral equation

 $L(x,\omega) = L_e(x,\omega) + \int_{\mathscr{S}^2_+(x)} f_s(\omega_i,x,\omega) \cos \theta_i \quad L(h(x,\omega_i),-\omega_i) \quad d\omega_i$ 



#### Maximize reward by learning importance sampling online



#### Maximize reward by learning importance sampling online

$$\begin{array}{lll} L(x,\omega) & = & L_{e}(x,\omega) & + \int_{\mathscr{S}^{2}_{+}(x)} & f_{s}(\omega_{i},x,\omega)\cos\theta_{i} & L(h(x,\omega_{i}),-\omega_{i}) & d\omega_{i} \\ Q'(s,a) & = (1-\alpha)Q(s,a) + \alpha \left( \begin{array}{cc} r(s,a) & + \gamma \int_{\mathscr{A}} & \pi(s',a') & Q(s',a') & da' \end{array} \right) \end{array}$$



#### Maximize reward by learning importance sampling online

structural equivalence of integral equation and Q-learning

- graphics example: learning the incident radiance

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_{\boldsymbol{\theta}}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\boldsymbol{s}}(\omega_i,y,-\omega)\cos\theta_i Q(y,\omega_i)d\omega_i \right)$$



#### Maximize reward by learning importance sampling online

structural equivalence of integral equation and Q-learning

- graphics example: learning the incident radiance

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_{\theta}(y,-\omega) + \int_{\mathscr{S}^{2}_{+}(y)} f_{s}(\omega_{i},y,-\omega)\cos\theta_{i}Q(y,\omega_{i})d\omega_{i} \right)$$

to be used as a policy for selecting an action  $\omega$  in state x to reach the next state  $y := h(x, \omega)$ 

- the learning rate  $\alpha$  is the only parameter left

Technical Note: Q-Learning



# Online algorithm for guiding light transport paths

```
Function pathTrace(camera, scene)
throughput \leftarrow 1
ray ← setupPrimaryRay(camera)
for i \leftarrow 0 to \infty do
      y, n \leftarrow \text{intersect}(scene, ray)
      if isEnvironment(y) then
            return throughput getRadianceFromEnvironment(ray, y)
      else if isAreaLight(y)
            return throughput getRadianceFromAreaLight(ray, y)
      \omega, p_{\omega}, f_s \leftarrow \text{sampleBsdf}(y, n)
      throughput \leftarrow throughput \cdot f_s \cdot \cos(n, \omega) / p_\omega
      ray \leftarrow y, \omega
```



# Online algorithm for guiding light transport paths

```
Function pathTrace(camera, scene)
 throughput \leftarrow 1
ray ← setupPrimaryRay(camera)
for i \leftarrow 0 to \infty do
       y, n \leftarrow \text{intersect}(scene, ray)
       if i > 0 then
            Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_e(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_s(\omega_i,y,-\omega)\cos\theta_i Q(y,\omega_i) d\omega_i \right)
       if isEnvironment(v) then
             return throughput · getRadianceFromEnvironment(ray, y)
       else if isAreaLight(y)
             return throughput · getRadianceFromAreaLight(ray, y)
       \omega, p_{\omega}, f_{s} \leftarrow sampleScatteringDirectionProportionalToQ(y)
       throughput \leftarrow throughput \cdot f_s \cdot \cos(n, \omega) / p_{\omega}
       ray \leftarrow y, \omega
```





approximate solution Q stored on discretized hemispheres across scene surface



2048 paths traced with BRDF importance sampling in a scene with challenging visibility



## Path tracing with online reinforcement learning at the same number of paths



# Metropolis light transport at the same number of paths

Guiding paths to where the value Q comes from

- shorter expected path length
- dramatically reduced number of paths with zero contribution
- very efficient online learning by learning Q from Q



Guiding paths to where the value Q comes from

- shorter expected path length
- dramatically reduced number of paths with zero contribution
- very efficient online learning by learning Q from Q
- directions for research
  - representation of value Q: data structures from games
  - importance sampling proportional to the integrand, i.e. the product of policy  $\gamma \cdot \pi$  times value Q

On-line learning of parametric mixture models for light transport simulation

- Product importance sampling for light transport path guiding
  - Fast product importance sampling of environment maps
    - Learning light transport the reinforced way
- Practical path guiding for efficient light-transport simulation



# From Graphics back to Machine Learning

Supervised learning of high dimensional function approximation

• input layer  $a_0$ , L-1 hidden layers, and output layer  $a_L$ 





Supervised learning of high dimensional function approximation

• input layer  $a_0$ , L-1 hidden layers, and output layer  $a_L$ 



-  $n_l$  rectified linear units (ReLU)  $a_{l,i} = \max\{0, \sum w_{l,j,i} a_{l-1,j}\}$  in layer l



Supervised learning of high dimensional function approximation

• input layer  $a_0$ , L-1 hidden layers, and output layer  $a_L$ 



- $n_l$  rectified linear units (ReLU)  $a_{l,i} = \max\{0, \sum w_{l,j,i} a_{l-1,j}\}$  in layer l
- backpropagating the error  $\delta_{l-1,i} = \sum_{a_{l,j} > 0} \delta_{l,j} w_{l,j,i}$



Supervised learning of high dimensional function approximation

input layer a<sub>0</sub>, L-1 hidden layers, and output layer a<sub>L</sub>



- $n_l$  rectified linear units (ReLU)  $a_{l,i} = \max\{0, \sum w_{l,j,i}a_{l-1,j}\}$  in layer l
- backpropagating the error  $\delta_{l-1,i} = \sum_{a_{l,j}>0} \delta_{l,j} w_{l,j,i}$ , update weights  $w'_{l,j,i} = w_{l,j,i} \lambda \delta_{l,j} a_{l-1,i}$  if  $a_{l,j} > 0$



Supervised learning of high dimensional function approximation

example architectures



classifier

Multilayer feedforward networks are universal approximators

> Approximation capabilities of multilayer feedforward networks

> Universal approximation bounds for superpositions of a sigmoidal function



Supervised learning of high dimensional function approximation

example architectures



classifier

generator

- Multilayer feedforward networks are universal approximators
- Approximation capabilities of multilayer feedforward networks
- Universal approximation bounds for superpositions of a sigmoidal function



Supervised learning of high dimensional function approximation

example architectures



classifier

generator

#### auto-encoder

Multilayer feedforward networks are universal approximators

> Approximation capabilities of multilayer feedforward networks

> Universal approximation bounds for superpositions of a sigmoidal function



## **Efficient Training of Artificial Neural Networks**

Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\theta}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$



#### **Efficient Training of Artificial Neural Networks**

Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\mathcal{S}}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

for  $\alpha = 1$  yields the residual, i.e. loss

$$\Delta Q := Q(x,\omega) - \left( L_{e}(y,-\omega) + \int_{\mathscr{S}^{2}_{+}(y)} f_{\mathcal{S}}(\omega_{i},y,-\omega) \cos \theta_{i} Q(y,\omega_{i}) d\omega_{i} \right)$$


Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_{\theta}(y,-\omega) + \int_{\mathscr{S}^{2}_{+}(y)} f_{\theta}(\omega_{i},y,-\omega) \cos \theta_{i} Q(y,\omega_{i}) d\omega_{i} \right)$$

for  $\alpha = 1$  yields the residual, i.e. loss

$$\Delta Q := Q(x,\omega) - \left( L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\mathcal{S}}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

- supervised learning algorithm
  - light transport paths generated by a low discrepancy sequence for online training



Using an integral equation for supervised learning

Q-learning

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left( L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\theta}(\omega_i, y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

for  $\alpha = 1$  yields the residual, i.e. loss

$$\Delta Q := Q(x,\omega) - \left( L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\mathcal{S}}(\omega_i,y,-\omega) \cos \theta_i Q(y,\omega_i) d\omega_i \right)$$

- supervised learning algorithm
  - light transport paths generated by a low discrepancy sequence for online training
  - learn weights of an artificial neural network for Q(x, n) by back-propagating loss of each path

A machine learning driven sky model

Global illumination with radiance regression Functions

- Machine learning and integral equations
  - Neural importance sampling



Learning from noisy/sampled labeled data

- find set of weights  $\theta$  of an artificial neural network f to minimize summed loss L
  - using clean targets  $y_i$  and data  $\hat{x}_i$  distributed according to  $\hat{x} \sim p(\hat{x}|y_i)$

 $\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), y_{i})$ 



Learning from noisy/sampled labeled data

- find set of weights  $\theta$  of an artificial neural network f to minimize summed loss L
  - using clean targets  $y_i$  and data  $\hat{x}_i$  distributed according to  $\hat{x} \sim p(\hat{x}|y_i)$

 $\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), y_{i})$ 

- using targets  $\hat{y}_i$  distributed according to  $\hat{y} \sim p(\hat{y})$  instead

$$\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), \hat{y}_{i})$$



Learning from noisy/sampled labeled data

- find set of weights  $\theta$  of an artificial neural network f to minimize summed loss L
  - using clean targets  $y_i$  and data  $\hat{x}_i$  distributed according to  $\hat{x} \sim p(\hat{x}|y_i)$

 $\operatorname{argmin}_{\theta} \sum_{i} L(f_{\theta}(\hat{x}_{i}), y_{i})$ 

- using targets  $\hat{y}_i$  distributed according to  $\hat{y} \sim p(\hat{y})$  instead  $\operatorname{argmin}_{\theta} \sum_i L(f_{\theta}(\hat{x}_i), \hat{y}_i)$ 
  - · allows for much faster training of artificial neural networks used in simulations
- amounts to learning integration and integro-approximation

Noise2Noise: Learning image restoration without clean data



## **Example Applications of Artificial Neural Networks in Rendering**

Learning from noisy/sampled labeled data

denoising quasi-Monte Carlo rendered images



(a) Input (64 spp), 23.93 dB

(b) Noisy targets, 32.42 dB

(c) Clean targets, 32.95 dB

(d) Reference (131k spp)

- noisy targets computed 2000× faster than clean targets



# Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

generative adversarial network (GAN)





generative adversarial network (GAN)





generative adversarial network (GAN)





- generative adversarial network (GAN)
  - update generator G using  $\nabla_{\theta_{\alpha}} \sum_{i=1}^{m} \log(1 D(G(\xi_i)))$





- generative adversarial network (GAN)
  - update discriminator D (k times) using  $\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m [\log D(x_i) + \log(1 D(G(\xi_i)))]$
  - update generator G using

 $abla_{ heta_g} \sum_{i=1}^m \log(1 - D(G(\xi_i)))$ 





## Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

Celebrity GAN



Progressive growing of GANs for improved quality, stability, and variation



## Example Applications of Artificial Neural Networks in Rendering

Replacing simulations by learned predictions for more efficiency

- much faster simulation of participating media
  - hierarchical stencil of volume densities as input to the neural network



Deep scattering: Rendering atmospheric clouds with radiance-predicting neural networks
Learning particle physics by example: Accelerating science with generative adversarial networks



## Complexity

- the brain
  - about 10<sup>11</sup> nerve cells with to up to 10<sup>4</sup> connections to others



## Complexity

- the brain
  - about 10<sup>11</sup> nerve cells with to up to 10<sup>4</sup> connections to others
- artificial neural networks
  - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where  $n_l$  is the number of neurons in layer  $l$ 

## Complexity

- the brain
  - about 10<sup>11</sup> nerve cells with to up to 10<sup>4</sup> connections to others
- artificial neural networks
  - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where  $n_l$  is the number of neurons in layer  $l$ 

- number of weights

$$n_w = \sum_{l=1}^L n_{l-1} \cdot n_l$$



## Complexity

- the brain
  - about 10<sup>11</sup> nerve cells with to up to 10<sup>4</sup> connections to others
- artificial neural networks
  - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where  $n_l$  is the number of neurons in layer  $l$ 

- number of weights

$$n_w = \sum_{l=1}^L c \cdot n_l$$

- constrain to constant number c of weights per neuron



## Complexity

- the brain
  - about 10<sup>11</sup> nerve cells with to up to 10<sup>4</sup> connections to others
- artificial neural networks
  - number of neural units

$$n = \sum_{l=1}^{L} n_l$$
 where  $n_l$  is the number of neurons in layer  $l$ 

- number of weights

$$n_w = \sum_{l=1}^L c \cdot n_l = c \cdot n$$

- constrain to constant number c of weights per neuron to reach complexity linear in n



Sampling proportional to the weights of the trained neural units

• partition of unit interval by sums  $P_k := \sum_{j=1}^k |w_j|$  of normalized absolute weights



Sampling proportional to the weights of the trained neural units

• partition of unit interval by sums  $P_k := \sum_{j=1}^k |w_j|$  of normalized absolute weights

$$\begin{array}{cccc} 0 & W_1 & W_2 & & \\ \hline P_0 & P_1 & P_2 & & \hline P_{m-1} & P_m \end{array}$$

- using a uniform random variable  $\xi \in [0,1)$  to

select input  $i \Leftrightarrow P_{i-1} \leq \xi < P_i$  satisfying  $\operatorname{Prob}(\{P_{i-1} \leq \xi < P_i\}) = |w_i|$ 



Sampling proportional to the weights of the trained neural units

• partition of unit interval by sums  $P_k := \sum_{j=1}^k |w_j|$  of normalized absolute weights

$$\underbrace{\begin{array}{ccc} 0 & W_1 & W_2 \\ P_0 & P_1 & P_2 \end{array}}_{W_m - 1} \underbrace{\begin{array}{ccc} W_m & 1 \\ P_{m-1} & P_m \end{array}}_{W_m - 1}$$

- using a uniform random variable  $\xi \in [0,1)$  to

select input  $i \Leftrightarrow P_{i-1} \leq \xi < P_i$  satisfying  $\operatorname{Prob}(\{P_{i-1} \leq \xi < P_i\}) = |w_i|$ 

- in fact derivation of quantization to ternary weights in {-1,0,+1}
  - integer weights result from neurons referenced more than once
  - relation to drop connect and drop out



#### Sampling proportional to the weights of the trained neural units



Percent of fully connected layers sampled



Sampling paths through networks

• complexity bounded by number of paths times depth *L* of network



#### Sampling paths through networks

- complexity bounded by number of paths times depth *L* of network
- application after training
  - backwards random walks using sampling proportional to the weights of a neuron
  - compression and quantization by importance sampling



#### Sampling paths through networks

- complexity bounded by number of paths times depth L of network
- application after training
  - backwards random walks using sampling proportional to the weights of a neuron
  - compression and quantization by importance sampling
- application before training
  - uniform (bidirectional) random walks to connect inputs and outputs
  - sparse from scratch



#### Sampling paths through networks

sparse from scratch





#### Sampling paths through networks

sparse from scratch





#### Sampling paths through networks

sparse from scratch



- guaranteed connectivity



#### Sampling paths through networks

sparse from scratch



- guaranteed connectivity



#### Sampling paths through networks

sparse from scratch



<sup>-</sup> guaranteed connectivity



#### Sampling paths through networks

sparse from scratch



<sup>-</sup> guaranteed connectivity



#### Sampling paths through networks

sparse from scratch



- guaranteed connectivity and coverage



Test accuracy for 4 layer feedforward network (784/300/300/10) trained sparse from scratch





## From Machine Learning to Graphics and back

#### Summary

- light transport and reinforcement learning described by same integral equation
  - learn where radiance comes from
- neural networks results of linear complexity by path tracing
  - ternarization and quantization of trained artificial neural networks
  - sparse from scratch training

