East Building, Ballroom BC
nvidia.com/siggraph2018

Machine, Learning and Rendering

Alex Keller, Director of Research

Machine Learning and Rendering

Course web page at https://sites.google.com/site/mlandrendering/

- 14:00 From Machine Learning to Graphics and back
- Alexander Keller, NVIDIA
- 14:40 Robust \& Efficient Light Transport by Machine Learning
- Jaroslav Křivánek, Charles University, Prague
- 15:15 Deep Learning for Light Transport Simulation
- Jan Novàk, Disney Research
- 16:05 Neural Realtime Rendering in Image Space
- Anton Kaplanyan, Facebook Reality Labs
- 16:40 Deep Realtime Rendering
- Marco Salvi, NVIDIA

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
& L_{r}\left(x, \omega_{r}\right) \\
& \quad=\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
& L_{r}\left(x, \omega_{r}\right) \\
& \quad=\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& \quad=\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& =\int_{\partial V} \int_{\partial V} V\left(x^{\prime}, y\right) \delta_{x}\left(x^{\prime}\right) L_{i}\left(x^{\prime}, \omega\right) f_{r}\left(\omega_{r}, x^{\prime}, \omega\right) \cos \theta_{x^{\prime}} \frac{\cos \theta_{y}}{\left|x^{\prime}-y\right|^{2}} d x^{\prime} d y
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& =\int_{\partial V} \int_{\partial V} V\left(x^{\prime}, y\right)\left(\lim _{r(x) \rightarrow 0} \frac{\chi_{B}\left(x-x^{\prime}\right)}{\pi r(x)^{2}}\right) L_{i}\left(x^{\prime}, \omega\right) f_{r}\left(\omega_{r}, x^{\prime}, \omega\right) \cos \theta_{x^{\prime}} \frac{\cos \theta_{y}}{\left|x^{\prime}-y\right|^{2}} d x^{\prime} d y
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
& L_{r}\left(x, \omega_{r}\right) \\
& \quad=\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& \quad=\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& \quad=\lim _{r(x) \rightarrow 0} \int_{\partial V} \int_{\partial V} V\left(x^{\prime}, y\right) \frac{\chi_{B}\left(x-x^{\prime}\right)}{\pi r(x)^{2}} L_{i}\left(x^{\prime}, \omega\right) f_{r}\left(\omega_{r}, x^{\prime}, \omega\right) \cos \theta_{y} \frac{\cos \theta_{x^{\prime}}}{\left|x^{\prime}-y\right|^{2}} d x^{\prime} d y
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& =\lim _{r(x) \rightarrow 0} \int_{\partial V} \int_{\mathscr{S}^{2}(y)} \frac{\chi_{B}(x-h(y, \omega))}{\pi r(x)^{2}} L_{i}(h(y, \omega), \omega) f_{r}\left(\omega_{r}, h(y, \omega), \omega\right) \cos \theta_{y} d \omega d y
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& =\lim _{r(x) \rightarrow 0} \int_{\partial V} \int_{\mathscr{S}^{2}(y)} \frac{\chi_{B}(x-h(y, \omega))}{\pi r(x)^{2}} L_{i}(h(y, \omega), \omega) f_{r}\left(\omega_{r}, h(y, \omega), \omega\right) \cos \theta_{y} d \omega d y \\
& =\int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}_{-}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& =\lim _{r(x) \rightarrow 0} \int_{\partial V} \int_{\mathscr{S}_{-}^{2}(y)} \frac{\chi_{B}(x-h(y, \omega))}{\pi r(x)^{2}} L_{i}(h(y, \omega), \omega) f_{r}\left(\omega_{r}, h(y, \omega), \omega\right) \cos \theta_{y} d \omega d y \\
& =\int_{\mathscr{S}_{-}^{2}(x)}\left(\lim _{r(x) \rightarrow 0} \frac{\int_{B(x)} w\left(x, x^{\prime}\right) L_{i}\left(x^{\prime}, \omega\right) d x^{\prime}}{\int_{B(x)} w\left(x, x^{\prime}\right) d x^{\prime}}\right) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- ways to formulate the radiance L_{r} reflected in a surface point x

$$
\begin{aligned}
L_{r} & \left(x, \omega_{r}\right) \\
& =\int_{\mathscr{S}^{2}(x)} L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega \\
& =\int_{\partial V} V(x, y) L_{i}(x, \omega) f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} \frac{\cos \theta_{y}}{|x-y|^{2}} d y \\
& =\lim _{r(x) \rightarrow 0} \int_{\partial V} \int_{\mathscr{S}^{2}(y)} \frac{\chi_{B}(x-h(y, \omega))}{\pi r(x)^{2}} L_{i}(h(y, \omega), \omega) f_{r}\left(\omega_{r}, h(y, \omega), \omega\right) \cos \theta_{y} d \omega d y \\
& =\lim _{r(x) \rightarrow 0} \int_{\mathscr{S}^{2}(x)} \frac{\int_{B(x)} w\left(x, x^{\prime}\right) L_{i}\left(x^{\prime}, \omega\right) d x^{\prime}}{\int_{B(x)} w\left(x, x^{\prime}\right) d x^{\prime}} f_{r}\left(\omega_{r}, x, \omega\right) \cos \theta_{x} d \omega
\end{aligned}
$$

Modern Path Tracing

Light transport simulation

- path tracing: Starting paths from camera and iterating scattering and ray tracing
- bad for small light sources, good for large light sources

Modern Path Tracing

Light transport simulation

- path tracing with next event estimation by shadow rays (dashed lines)
- good for small light sources, bad for close light sources

Modern Path Tracing

Light transport simulation

- light tracing, i.e. paths starting from the light source connected to the camera
- can capture some caustics, where path tracing and next event estimation do not work

Modern Path Tracing

Light transport simulation

- all obvious ways to generate light transport paths
- which ones are good?

Modern Path Tracing

Light transport simulation

- bidirectional path tracing, optimally combining all techniques by weighting each contribution
- $\sum_{i=0}^{l} W_{l, i}=1$ for path length $I-1, I \in \mathbb{N}$

Modern Path Tracing

Light transport simulation

- bidirectional path tracing, optimally combining all techniques by weighting each contribution
- $\sum_{i=0}^{l} W_{l, i}=1$ for path length $I-1, I \in \mathbb{N}$

- problem of insufficient techniques, for example, if only one $w_{l, i} \neq 0$

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x
$$

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

		\bullet
	\bullet	
\bullet		
	\bullet	
	\bullet	
	\bullet	

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{5}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Modern Path Tracing

Numerical integro-approximation

- Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- uniform, independent, unpredictable random samples x_{i}
- simulated by pseudo-random numbers

- quasi-Monte Carlo methods

$$
g(y)=\int_{[0,1)^{s}} f(y, x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(y, x_{i}\right)
$$

- much more uniform correlated samples x_{i}

- realized by low-discrepancy sequences, which are progressive Latin-hypercube samples

Modern Path Tracing

Pushbutton paradigm

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize

Modern Path Tracing

Pushbutton paradigm

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- unbiased
- zero difference between expectation and mathematical object
- not sufficient for convergence

Modern Path Tracing

Pushbutton paradigm

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- biased
- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency

Modern Path Tracing

Pushbutton paradigm

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- biased
- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency
- consistent
- error vanishes with increasing set of samples
- no persistent artifacts introduced by algorithm

Modern Path Tracing

Pushbutton paradigm

- deterministic
- may improve speed of convergence
- reproducible and simple to parallelize
- biased
- allows for ameliorating the problem of insufficient techniques
- can tremendously increase efficiency
- consistent
- error vanishes with increasing set of samples
- no persistent artifacts introduced by algorithm
- The Iray light transport simulation and rendering system

Reconstruction from noisy input: Massively parallel path space filtering (link)

From Machine Learning to Graphics

Machine Learning

Taxonomy

- unsupervised learning from unlabeled data
- examples: clustering, auto-encoder networks

Machine Learning

Taxonomy

- unsupervised learning from unlabeled data
- examples: clustering, auto-encoder networks
- semi-supervised learning by rewards
- example: reinforcement learning

Machine Learning

Taxonomy

- unsupervised learning from unlabeled data
- examples: clustering, auto-encoder networks
- semi-supervised learning by rewards
- example: reinforcement learning
- supervised learning from labeled data
- examples: support vector machines, decision trees, artificial neural networks

Reinforcement Learning

Goal: maximize reward

- state transition yields reward

$$
r_{t+1}\left(a_{t} \mid s_{t}\right) \in \mathbb{R}
$$

Reinforcement Learning

Goal: maximize reward

- state transition yields reward

$$
r_{t+1}\left(a_{t} \mid s_{t}\right) \in \mathbb{R}
$$

- learn a policy π_{t}
- to select an action $a_{t} \in \mathbb{A}\left(s_{t}\right)$
- given the current state $s_{t} \in \mathbb{S}$

Reinforcement Learning

Goal: maximize reward

- state transition yields reward

$$
r_{t+1}\left(a_{t} \mid s_{t}\right) \in \mathbb{R}
$$

- learn a policy π_{t}
- to select an action $a_{t} \in \mathbb{A}\left(s_{t}\right)$
- given the current state $s_{t} \in \mathbb{S}$

- maximizing the discounted cumulative reward

$$
V\left(s_{t}\right) \equiv \sum_{k=0}^{\infty} \gamma^{k} \cdot r_{t+1+k}\left(a_{t+k} \mid s_{t+k}\right), \text { where } 0<\gamma<1
$$

Reinforcement Learning

Q-Learning [Watkins 1989]

- learns optimal action selection policy for any given Markov decision process

$$
Q^{\prime}(s, a)=(1-\alpha) \cdot Q(s, a)+\alpha \cdot\left(r(s, a)+\gamma \cdot V\left(s^{\prime}\right)\right) \text { for a learning rate } \alpha \in[0,1]
$$

Reinforcement Learning

Q-Learning [Watkins 1989]

- learns optimal action selection policy for any given Markov decision process

$$
Q^{\prime}(s, a)=(1-\alpha) \cdot Q(s, a)+\alpha \cdot\left(r(s, a)+\gamma \cdot V\left(s^{\prime}\right)\right) \text { for a learning rate } \alpha \in[0,1]
$$

with the following options for the discounted cumulative reward

$$
V\left(s^{\prime}\right) \equiv \begin{cases}\max _{a^{\prime} \in \mathbb{A}} Q\left(s^{\prime}, a^{\prime}\right) & \text { consider best action in next state } s^{\prime} \\ \end{cases}
$$

Reinforcement Learning

Q-Learning [Watkins 1989]

- learns optimal action selection policy for any given Markov decision process

$$
Q^{\prime}(s, a)=(1-\alpha) \cdot Q(s, a)+\alpha \cdot\left(r(s, a)+\gamma \cdot V\left(s^{\prime}\right)\right) \text { for a learning rate } \alpha \in[0,1]
$$

with the following options for the discounted cumulative reward

$$
V\left(s^{\prime}\right) \equiv \begin{cases}\max _{a^{\prime} \in \mathbb{A}} Q\left(s^{\prime}, a^{\prime}\right) & \text { consider best action in next state } s^{\prime} \\ \sum_{a^{\prime} \in \mathbb{A}} \pi\left(s^{\prime}, a^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right) & \text { policy weighted average over discrete action space }\end{cases}
$$

Reinforcement Learning

Q-Learning [Watkins 1989]

- learns optimal action selection policy for any given Markov decision process

$$
Q^{\prime}(s, a)=(1-\alpha) \cdot Q(s, a)+\alpha \cdot\left(r(s, a)+\gamma \cdot V\left(s^{\prime}\right)\right) \text { for a learning rate } \alpha \in[0,1]
$$

with the following options for the discounted cumulative reward

$$
V\left(s^{\prime}\right) \equiv \begin{cases}\max _{a^{\prime} \in \mathbb{A}} Q\left(s^{\prime}, a^{\prime}\right) & \text { consider best action in next state } s^{\prime} \\ \sum_{a^{\prime} \in \mathbb{A}} \pi\left(s^{\prime}, a^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right) & \text { policy weighted average over discrete action space } \\ \int_{\mathbb{A}} \pi\left(s^{\prime}, a^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right) d a^{\prime} & \text { policy weighted average over continuous action space }\end{cases}
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- radiance integral equation

$$
L(x, \omega)=\quad L_{e}(x, \omega)+\int_{\mathscr{S}_{+}^{2}(x)} f_{s}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} \quad L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right) \quad d \omega_{i}
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- structural equivalence of integral equation and Q-learning

$$
\left.\begin{array}{lllll}
L(x, \omega) & = & L_{e}(x, \omega)+\int_{\mathscr{S}_{+}^{2}(x)} & f_{s}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} & L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right)
\end{array} d \omega_{i}\right)
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- structural equivalence of integral equation and Q-learning

$$
\begin{array}{lllll}
L(x, \omega) & = & L_{e}(x, \omega)+\int_{\mathscr{L}_{+}^{2}(x)} & f_{s}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} & L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right) \\
Q(s, a) & =(1-\alpha) Q(s, a)+\alpha\left(\omega_{i}\right. \\
r(s, a) & +\gamma \int_{\mathscr{A}} & \pi\left(s^{\prime}, a^{\prime}\right) & Q\left(s^{\prime}, a^{\prime}\right) & \left.d a^{\prime}\right)
\end{array}
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- structural equivalence of integral equation and Q-learning

$$
\begin{array}{lllll}
L(x, \omega) & = & L_{e}(x, \omega)+\int_{\mathscr{S}_{+}^{2}(x)} & f_{S}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} & L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right) \\
d(s, a) & d \omega_{i} \\
r(1-\alpha) Q(s, a)+\alpha(s, a) & +\gamma \int_{\mathscr{A}} & \pi\left(s^{\prime}, a^{\prime}\right) & Q\left(s^{\prime}, a^{\prime}\right) & \left.d a^{\prime}\right)
\end{array}
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- structural equivalence of integral equation and Q-learning

$$
\begin{array}{rllll}
L(x, \omega) & = & L_{e}(x, \omega)+\int_{\mathscr{L}_{+}^{2}(x)} & f_{s}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} & L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right) \\
Q^{\prime}(s, a) & =(1-\alpha) Q(s, a)+\alpha\left(\omega_{i}\right. \\
r(s, a) & +\gamma \int_{\mathscr{A}} & \pi\left(s^{\prime}, a^{\prime}\right) & Q\left(s^{\prime}, a^{\prime}\right) & \left.d a^{\prime}\right)
\end{array}
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- structural equivalence of integral equation and Q-learning

$$
\begin{array}{lllll}
L(x, \omega) & = & L_{e}(x, \omega)+\int_{\mathscr{S}_{+}^{2}(x)} & f_{s}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} & L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right) \\
Q(s, a) & =(1-\alpha) Q(s, a)+\alpha\left(\omega_{i}\right. \\
r(s, a) & +\gamma \int_{\mathscr{A}} & \pi\left(s^{\prime}, a^{\prime}\right) & Q\left(s^{\prime}, a^{\prime}\right) & \left.d a^{\prime}\right)
\end{array}
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- structural equivalence of integral equation and Q-learning

$$
\left.\begin{array}{rllll}
L(x, \omega) & = & L_{e}(x, \omega)+\int_{\mathscr{S}_{+}^{2}(x)} & f_{s}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} & L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right)
\end{array} d \omega_{i}\right)
$$

- graphics example: learning the incident radiance

$$
Q^{\prime}(x, \omega)=(1-\alpha) Q(x, \omega)+\alpha\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

Reinforcement Learning

Maximize reward by learning importance sampling online

- structural equivalence of integral equation and Q-learning

$$
\left.\begin{array}{rllll}
L(x, \omega) & = & L_{e}(x, \omega)+\int_{\mathscr{S}_{+}^{2}(x)} & f_{s}\left(\omega_{i}, x, \omega\right) \cos \theta_{i} & L\left(h\left(x, \omega_{i}\right),-\omega_{i}\right)
\end{array} d \omega_{i}\right)
$$

- graphics example: learning the incident radiance

$$
Q^{\prime}(x, \omega)=(1-\alpha) Q(x, \omega)+\alpha\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

to be used as a policy for selecting an action ω in state x to reach the next state $y:=h(x, \omega)$

- the learning rate α is the only parameter left

Reinforcement Learning

Online algorithm for guiding light transport paths

Function pathTrace(camera, scene)
throughput $\leftarrow 1$
ray \leftarrow setupPrimaryRay(camera)
for $i \leftarrow 0$ to ∞ do
$y, n \leftarrow$ intersect(scene, ray)
if isEnvironment(y) then
return throughput-getRadianceFromEnvironment(ray, y)
else if isAreaLight(y)
return throughput• getRadianceFromAreaLight(ray,y)
$\omega, p_{\omega}, f_{s} \leftarrow \operatorname{sampleBsdf}(y, n)$
throughput \leftarrow throughput $\cdot f_{s} \cdot \cos (n, \omega) / p_{\omega}$
ray $\leftarrow y, \omega$

Reinforcement Learning

Online algorithm for guiding light transport paths

Function pathTrace(camera, scene)
throughput $\leftarrow 1$
ray \leftarrow setupPrimaryRay(camera)
for $i \leftarrow 0$ to ∞ do
$y, n \leftarrow$ intersect(scene, ray)
if $i>0$ then

$$
Q^{\prime}(x, \omega)=(1-\alpha) Q(x, \omega)+\alpha\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

if isEnvironment(y) then
return throughput- getRadianceFromEnvironment(ray, y)
else if isAreaLight(y)
return throughput- getRadianceFromAreaLight(ray, y)
$\omega, p_{\omega}, f_{s} \leftarrow$ sampleScatteringDirectionProportionalToQ (y)
throughput \leftarrow throughput $\cdot f_{s} \cdot \cos (n, \omega) / p_{\omega}$
ray $\leftarrow y, \omega$

approximate solution Q stored on discretized hemispheres across scene surface

2048 paths traced with BRDF importance sampling in a scene with challenging visibility

Path tracing with online reinforcement learning at the same number of paths

Metropolis light transport at the same number of paths

Reinforcement Learning

Guiding paths to where the value Q comes from

- shorter expected path length
- dramatically reduced number of paths with zero contribution
- very efficient online learning by learning Q from Q

Reinforcement Learning

Guiding paths to where the value Q comes from

- shorter expected path length
- dramatically reduced number of paths with zero contribution
- very efficient online learning by learning Q from Q
- directions for research
- representation of value Q : data structures from games
- importance sampling proportional to the integrand, i.e. the product of policy $\gamma \cdot \pi$ times value Q
- Fast product importance sampling of environment maps
- Learning light transport the reinforced way
- Practical path guiding for efficient light-transport simulation

From Graphics back to Machine Learning

Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

- input layer $a_{0}, L-1$ hidden layers, and output layer a_{L}

Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

- input layer $a_{0}, L-1$ hidden layers, and output layer a_{L}

- n_{l} rectified linear units $(\operatorname{ReLU}) a_{l, i}=\max \left\{0, \sum w_{l, j, i} a_{l-1, j}\right\}$ in layer I

Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

- input layer $a_{0}, L-1$ hidden layers, and output layer a_{L}

- n_{l} rectified linear units $(\operatorname{ReLU}) a_{l, i}=\max \left\{0, \sum w_{l, j, i} a_{l-1, j}\right\}$ in layer I
- backpropagating the error $\delta_{l-1, i}=\sum_{a_{l, j}>0} \delta_{l, j} w_{l, j, i}$

Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

- input layer $a_{0}, L-1$ hidden layers, and output layer a_{L}

- n_{l} rectified linear units $(\operatorname{ReLU}) a_{l, i}=\max \left\{0, \sum w_{l, j, i} a_{l-1, j}\right\}$ in layer I
- backpropagating the error $\delta_{l-1, i}=\sum_{a_{l, j}>0} \delta_{l, j} w_{l, j, i}$, update weights $w_{l, j, i}^{\prime}=w_{l, j, i}-\lambda \delta_{l, j} a_{l-1, i}$ if $a_{l, j}>0$

Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

- example architectures

classifier
- Multilayer feedforward networks are universal approximators
- Approximation capabilities of multilayer feedforward networks
- Universal approximation bounds for superpositions of a sigmoidal function

Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

- example architectures

classifier

generator
- Multilayer feedforward networks are universal approximators
- Approximation capabilities of multilayer feedforward networks
- Universal approximation bounds for superpositions of a sigmoidal function

Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

- example architectures

classifier

generator

auto-encoder
- Multilayer feedforward networks are universal approximators
- Approximation capabilities of multilayer feedforward networks
- Universal approximation bounds for superpositions of a sigmoidal function

Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

- Q-learning

$$
Q^{\prime}(x, \omega)=(1-\alpha) Q(x, \omega)+\alpha\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

- Q-learning

$$
Q(x, \omega)=(1-\alpha) Q(x, \omega)+\alpha\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

for $\alpha=1$ yields the residual, i.e. loss

$$
\Delta Q:=Q(x, \omega)-\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

- Q-learning

$$
Q^{\prime}(x, \omega)=(1-\alpha) Q(x, \omega)+\alpha\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

for $\alpha=1$ yields the residual, i.e. loss

$$
\Delta Q:=Q(x, \omega)-\left(L_{e}(y,-\omega)+\int_{\mathscr{C}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

- supervised learning algorithm
- light transport paths generated by a low discrepancy sequence for online training

Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

- Q-learning

$$
Q^{\prime}(x, \omega)=(1-\alpha) Q(x, \omega)+\alpha\left(L_{e}(y,-\omega)+\int_{\mathscr{S}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

for $\alpha=1$ yields the residual, i.e. loss

$$
\Delta Q:=Q(x, \omega)-\left(L_{e}(y,-\omega)+\int_{\mathscr{C}_{+}^{2}(y)} f_{s}\left(\omega_{i}, y,-\omega\right) \cos \theta_{i} Q\left(y, \omega_{i}\right) d \omega_{i}\right)
$$

- supervised learning algorithm
- light transport paths generated by a low discrepancy sequence for online training
- learn weights of an artificial neural network for $Q(x, n)$ by back-propagating loss of each path

Efficient Training of Artificial Neural Networks

Learning from noisy/sampled labeled data

- find set of weights θ of an artificial neural network f to minimize summed loss L - using clean targets y_{i} and data \hat{x}_{i} distributed according to $\hat{x} \sim p\left(\hat{x} \mid y_{i}\right)$

$$
\operatorname{argmin}_{\theta} \sum_{i} L\left(f_{\theta}\left(\hat{x}_{i}\right), y_{i}\right)
$$

Efficient Training of Artificial Neural Networks

Learning from noisy/sampled labeled data

- find set of weights θ of an artificial neural network f to minimize summed loss L - using clean targets y_{i} and data \hat{x}_{i} distributed according to $\hat{x} \sim p\left(\hat{x} \mid y_{i}\right)$

$$
\operatorname{argmin}_{\theta} \sum_{i} L\left(f_{\theta}\left(\hat{x}_{i}\right), y_{i}\right)
$$

- using targets \hat{y}_{i} distributed according to $\hat{y} \sim p(\hat{y})$ instead

$$
\operatorname{argmin}_{\theta} \sum_{i} L\left(f_{\theta}\left(\hat{x}_{i}\right), \hat{y}_{i}\right)
$$

Efficient Training of Artificial Neural Networks

Learning from noisy/sampled labeled data

- find set of weights θ of an artificial neural network f to minimize summed loss L
- using clean targets y_{i} and data \hat{x}_{i} distributed according to $\hat{x} \sim p\left(\hat{x} \mid y_{i}\right)$

$$
\operatorname{argmin}_{\theta} \sum_{i} L\left(f_{\theta}\left(\hat{x}_{i}\right), y_{i}\right)
$$

- using targets \hat{y}_{i} distributed according to $\hat{y} \sim p(\hat{y})$ instead

$$
\operatorname{argmin}_{\theta} \sum_{i} L\left(f_{\theta}\left(\hat{x}_{i}\right), \hat{y}_{i}\right)
$$

- allows for much faster training of artificial neural networks used in simulations
- amounts to learning integration and integro-approximation

Example Applications of Artificial Neural Networks in Rendering

Learning from noisy/sampled labeled data

- denoising quasi-Monte Carlo rendered images

- noisy targets computed $2000 \times$ faster than clean targets

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

- generative adversarial network (GAN)

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

- generative adversarial network (GAN)

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

- generative adversarial network (GAN)

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

- generative adversarial network (GAN)
- update generator G using $\quad \nabla_{\theta_{g}} \sum_{i=1}^{m} \log \left(1-D\left(G\left(\xi_{i}\right)\right)\right)$

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

- generative adversarial network (GAN)
- update discriminator D (k times) using $\nabla_{\theta_{d}} \frac{1}{m} \sum_{i=1}^{m}\left[\log D\left(x_{i}\right)+\log \left(1-D\left(G\left(\xi_{i}\right)\right)\right)\right]$
- update generator G using

$$
\nabla_{\theta_{g}} \sum_{i=1}^{m} \log \left(1-D\left(G\left(\xi_{i}\right)\right)\right)
$$

Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

- Celebrity GAN

Example Applications of Artificial Neural Networks in Rendering

Replacing simulations by learned predictions for more efficiency

- much faster simulation of participating media
- hierarchical stencil of volume densities as input to the neural network

- Deep scattering: Rendering atmospheric clouds with radiance-predicting neural networks
- Learning particle physics by example: Accelerating science with generative adversarial networks

Neural Networks linear in Time and Space

Neural Networks linear in Time and Space

Complexity

- the brain
- about 10^{11} nerve cells with to up to 10^{4} connections to others

Neural Networks linear in Time and Space

Complexity

- the brain
- about 10^{11} nerve cells with to up to 10^{4} connections to others
- artificial neural networks
- number of neural units
$n=\sum_{l=1}^{L} n_{l} \quad$ where n_{l} is the number of neurons in layer $/$

Neural Networks linear in Time and Space

Complexity

- the brain
- about 10^{11} nerve cells with to up to 10^{4} connections to others
- artificial neural networks
- number of neural units

$$
n=\sum_{l=1}^{L} n_{l} \quad \text { where } n_{l} \text { is the number of neurons in layer / }
$$

- number of weights

$$
n_{w}=\sum_{l=1}^{L} n_{l-1} \cdot n_{l}
$$

Neural Networks linear in Time and Space

Complexity

- the brain
- about 10^{11} nerve cells with to up to 10^{4} connections to others
- artificial neural networks
- number of neural units

$$
n=\sum_{l=1}^{L} n_{l} \quad \text { where } n_{l} \text { is the number of neurons in layer / }
$$

- number of weights

$$
n_{w}=\sum_{l=1}^{L} c \cdot n_{l}
$$

- constrain to constant number c of weights per neuron

Neural Networks linear in Time and Space

Complexity

- the brain
- about 10^{11} nerve cells with to up to 10^{4} connections to others
- artificial neural networks
- number of neural units

$$
n=\sum_{l=1}^{L} n_{l} \quad \text { where } n_{l} \text { is the number of neurons in layer / }
$$

- number of weights

$$
n_{w}=\sum_{l=1}^{L} c \cdot n_{l}=c \cdot n
$$

- constrain to constant number c of weights per neuron to reach complexity linear in n

Neural Networks linear in Time and Space

Sampling proportional to the weights of the trained neural units

- partition of unit interval by sums $P_{k}:=\sum_{j=1}^{k}\left|w_{j}\right|$ of normalized absolute weights

Neural Networks linear in Time and Space

Sampling proportional to the weights of the trained neural units

- partition of unit interval by sums $P_{k}:=\sum_{j=1}^{k}\left|w_{j}\right|$ of normalized absolute weights

- using a uniform random variable $\xi \in[0,1)$ to
select input $i \Leftrightarrow P_{i-1} \leq \xi<P_{i}$ satisfying $\operatorname{Prob}\left(\left\{P_{i-1} \leq \xi<P_{i}\right\}\right)=\left|w_{i}\right|$

Neural Networks linear in Time and Space

Sampling proportional to the weights of the trained neural units

- partition of unit interval by sums $P_{k}:=\sum_{j=1}^{k}\left|w_{j}\right|$ of normalized absolute weights

- using a uniform random variable $\xi \in[0,1)$ to select input $i \Leftrightarrow P_{i-1} \leq \xi<P_{i}$ satisfying $\operatorname{Prob}\left(\left\{P_{i-1} \leq \xi<P_{i}\right\}\right)=\left|w_{i}\right|$
- in fact derivation of quantization to ternary weights in $\{-1,0,+1\}$
- integer weights result from neurons referenced more than once
- relation to drop connect and drop out

Neural Networks linear in Time and Space

Sampling proportional to the weights of the trained neural units

Neural Networks linear in Time and Space

Sampling paths through networks

- complexity bounded by number of paths times depth L of network

Neural Networks linear in Time and Space

Sampling paths through networks

- complexity bounded by number of paths times depth L of network
- application after training
- backwards random walks using sampling proportional to the weights of a neuron
- compression and quantization by importance sampling

Neural Networks linear in Time and Space

Sampling paths through networks

- complexity bounded by number of paths times depth L of network
- application after training
- backwards random walks using sampling proportional to the weights of a neuron
- compression and quantization by importance sampling
- application before training
- uniform (bidirectional) random walks to connect inputs and outputs
- sparse from scratch

Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

- guaranteed connectivity

Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

- guaranteed connectivity

Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

- guaranteed connectivity

Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

- guaranteed connectivity

Neural Networks linear in Time and Space

Sampling paths through networks

- sparse from scratch

- guaranteed connectivity and coverage

Neural Networks linear in Time and Space

Test accuracy for 4 layer feedforward network (784/300/300/10) trained sparse from scratch

From Machine Learning to Graphics and back

Summary

- light transport and reinforcement learning described by same integral equation
- learn where radiance comes from
- neural networks results of linear complexity by path tracing
- ternarization and quantization of trained artificial neural networks
- sparse from scratch training

