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Modern Path Tracing

Light transport simulation

⌅ ways to formulate the radiance Lr reflected in a surface point x
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Modern Path Tracing

Light transport simulation

⌅ path tracing: Starting paths from camera and iterating scattering and ray tracing

– bad for small light sources, good for large light sources

P

P

P

⌅ problem of insufficient techniques, for example, if only one wl ,i 6= 0
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Modern Path Tracing

Light transport simulation

⌅ path tracing with next event estimation by shadow rays (dashed lines)

– good for small light sources, bad for close light sources

P

P P
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⌅ problem of insufficient techniques, for example, if only one wl ,i 6= 0
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Modern Path Tracing

Light transport simulation

⌅ light tracing, i.e. paths starting from the light source connected to the camera

– can capture some caustics, where path tracing and next event estimation do not work

P P

P P P

P P P

⌅ problem of insufficient techniques, for example, if only one wl ,i 6= 0
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Modern Path Tracing

Light transport simulation

⌅ all obvious ways to generate light transport paths

– which ones are good ?

P P

P P P

P P P P

⌅ problem of insufficient techniques, for example, if only one wl ,i 6= 0
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Modern Path Tracing

Light transport simulation

⌅ bidirectional path tracing, optimally combining all techniques by weighting each contribution

– Âl
i=0

wl ,i = 1 for path length l�1, l 2 N

w1,1· P +w1,0· P

+w2,2· P +w2,1· P +w2,0· P

+w3,3· P +w3,2· P +w3,1· P +w3,0· P

⌅ problem of insufficient techniques, for example, if only one wl ,i 6= 0
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Modern Path Tracing

Numerical integro-approximation

⌅ Monte Carlo methods
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Modern Path Tracing

Numerical integro-approximation

⌅ Monte Carlo methods

g(y) =
Z

[0,1)s
f (y ,x)dx ⇡ 1

n

n

Â
i=1

f (y ,xi )

– uniform, independent, unpredictable random samples xi

– simulated by pseudo-random numbers
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⌅ quasi-Monte Carlo methods

g(y) =
Z

[0,1)s
f (y ,x)dx ⇡ 1

n

n

Â
i=1

f (y ,xi )

– much more uniform correlated samples xi

– realized by low-discrepancy sequences, which are progressive Latin-hypercube samples
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Modern Path Tracing

Pushbutton paradigm

⌅ deterministic

– may improve speed of convergence

– reproducible and simple to parallelize

6
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⌅ unbiased

– zero difference between expectation and mathematical object

– not sufficient for convergence
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Modern Path Tracing

Pushbutton paradigm

⌅ deterministic

– may improve speed of convergence

– reproducible and simple to parallelize

⌅ biased

– allows for ameliorating the problem of insufficient techniques

– can tremendously increase efficiency

⌅ consistent

– error vanishes with increasing set of samples

– no persistent artifacts introduced by algorithm

I Quasi-Monte Carlo image synthesis in a nutshell

I The Iray light transport simulation and rendering system

6

http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Keller_Tutorial.pdf
https://arxiv.org/abs/1705.01263
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Reconstruction from noisy input: Massively parallel path space filtering (link)

http://research.nvidia.com/person/nikolaus-binder


From Machine Learning to Graphics



Machine Learning

Taxonomy

⌅ unsupervised learning from unlabeled data

– examples: clustering, auto-encoder networks

⌅ semi-supervised learning by rewards

– example: reinforcement learning

⌅ supervised learning from labeled data

– examples: support vector machines, decision trees, artificial neural networks
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Reinforcement Learning

Goal: maximize reward

⌅ state transition yields reward

rt+1(at | st ) 2 R

⌅ learn a policy pt

– to select an action at 2 A(st )

– given the current state st 2 S

Agent st

Environment

atst+1 rt+1(at | st )

10



Reinforcement Learning

Goal: maximize reward

⌅ state transition yields reward

rt+1(at | st ) 2 R

⌅ learn a policy pt

– to select an action at 2 A(st )

– given the current state st 2 S

Agent st

Environment

atst+1 rt+1(at | st )

10



Reinforcement Learning

Goal: maximize reward

⌅ state transition yields reward

rt+1(at | st ) 2 R

⌅ learn a policy pt

– to select an action at 2 A(st )

– given the current state st 2 S

Agent st

Environment

atst+1 rt+1(at | st )

⌅ maximizing the discounted cumulative reward

V (st )⌘
•
Â

k=0

gk · rt+1+k (at+k | st+k ), where 0 < g < 1

10



Reinforcement Learning

Q-Learning [Watkins 1989]

⌅ learns optimal action selection policy for any given Markov decision process

Q0(s,a) = (1�a) · Q(s,a)+a ·
�
r(s,a)+ g ·V (s0)

�
for a learning rate a 2 [0,1]

with the following options for the discounted cumulative reward

V (s0) ⌘

8
>>>>>><

>>>>>>:

maxa02A Q(s0,a0) consider best action in next state s0

Âa02A p(s0,a0)Q(s0,a0) policy weighted average over discrete action space

R
A p(s0,a0)Q(s0,a0)da0 policy weighted average over continuous action space

11



Reinforcement Learning

Q-Learning [Watkins 1989]

⌅ learns optimal action selection policy for any given Markov decision process

Q0(s,a) = (1�a) · Q(s,a)+a ·
�
r(s,a)+ g ·V (s0)

�
for a learning rate a 2 [0,1]

with the following options for the discounted cumulative reward

V (s0) ⌘

8
>>>>>><

>>>>>>:

maxa02A Q(s0,a0) consider best action in next state s0

Âa02A p(s0,a0)Q(s0,a0) policy weighted average over discrete action space

R
A p(s0,a0)Q(s0,a0)da0 policy weighted average over continuous action space

11



Reinforcement Learning

Q-Learning [Watkins 1989]

⌅ learns optimal action selection policy for any given Markov decision process

Q0(s,a) = (1�a) · Q(s,a)+a ·
�
r(s,a)+ g ·V (s0)

�
for a learning rate a 2 [0,1]

with the following options for the discounted cumulative reward

V (s0) ⌘

8
>>>>>><

>>>>>>:

maxa02A Q(s0,a0) consider best action in next state s0

Âa02A p(s0,a0)Q(s0,a0) policy weighted average over discrete action space

R
A p(s0,a0)Q(s0,a0)da0 policy weighted average over continuous action space

11



Reinforcement Learning

Q-Learning [Watkins 1989]

⌅ learns optimal action selection policy for any given Markov decision process

Q0(s,a) = (1�a) · Q(s,a)+a ·
�
r(s,a)+ g ·V (s0)

�
for a learning rate a 2 [0,1]

with the following options for the discounted cumulative reward

V (s0) ⌘

8
>>>>>><

>>>>>>:

maxa02A Q(s0,a0) consider best action in next state s0

Âa02A p(s0,a0)Q(s0,a0) policy weighted average over discrete action space

R
A p(s0,a0)Q(s0,a0)da0 policy weighted average over continuous action space

11



Reinforcement Learning

Maximize reward by learning importance sampling online

⌅ radiance integral equation

L(x ,w) = Le(x ,w) +
R
S 2

+(x)
fs(wi ,x ,w)cosqi L(h(x ,wi ),�wi ) dwi

Q0(s,a) = (1�a)Q(s,a)+a
✓

r(s,a) + g
R
A p(s0,a0) Q(s0,a0) da0

◆

⌅ graphics example: learning the incident radiance

Q0(x ,w) = (1�a)Q(x ,w)+a
✓

Le(y ,�w)+
Z

S 2
+(y)

fs(wi ,y ,�w)cosqiQ(y ,wi )dwi

◆
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Reinforcement Learning

Maximize reward by learning importance sampling online

⌅ structural equivalence of integral equation and Q-learning

L(x ,w) = Le(x ,w) +
R
S 2

+(x)
fs(wi ,x ,w)cosqi L(h(x ,wi ),�wi ) dwi

Q0(s,a) = (1�a)Q(s,a)+a
✓

r(s,a) + g
R
A p(s0,a0) Q(s0,a0) da0

◆

⌅ graphics example: learning the incident radiance

Q0(x ,w) = (1�a)Q(x ,w)+a
✓

Le(y ,�w)+
Z

S 2
+(y)

fs(wi ,y ,�w)cosqiQ(y ,wi )dwi

◆

to be used as a policy for selecting an action w in state x to reach the next state y := h(x ,w)

– the learning rate a is the only parameter left

I Technical Note: Q-Learning

12

http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf


Reinforcement Learning

Online algorithm for guiding light transport paths

Function pathTrace(camera,scene)
throughput  1

ray  setupPrimaryRay(camera)

for i  0 to • do

y ,n intersect(scene, ray )

if i > 0 then

Q0(x ,w) = (1�a)Q(x ,w)+a
✓

Le(y ,�w)+
R
S 2
+(y) fs(wi ,y ,�w)cosqi Q(y ,wi )dwi

◆

if isEnvironment(y) then

return throughput · getRadianceFromEnvironment(ray ,y )

else if isAreaLight(y)
return throughput · getRadianceFromAreaLight(ray ,y )

w,pw , fs  sampleBsdf(y ,n)

throughput  throughput · fs ·cos(n,w) / pw

ray  y , w

13
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Function pathTrace(camera,scene)
throughput  1

ray  setupPrimaryRay(camera)

for i  0 to • do

y ,n intersect(scene, ray )

if i > 0 then

Q0(x ,w) = (1�a)Q(x ,w)+a
✓

Le(y ,�w)+
R
S 2
+(y) fs(wi ,y ,�w)cosqi Q(y ,wi )dwi

◆

if isEnvironment(y) then

return throughput · getRadianceFromEnvironment(ray ,y )

else if isAreaLight(y)
return throughput · getRadianceFromAreaLight(ray ,y )

w,pw , fs  sampleScatteringDirectionProportionalToQ(y )

throughput  throughput · fs ·cos(n,w) / pw

ray  y , w

13



approximate solution Q stored on discretized hemispheres across scene surface



2048 paths traced with BRDF importance sampling in a scene with challenging visibility



Path tracing with online reinforcement learning at the same number of paths



Metropolis light transport at the same number of paths



Reinforcement Learning

Guiding paths to where the value Q comes from

⌅ shorter expected path length

⌅ dramatically reduced number of paths with zero contribution

⌅ very efficient online learning by learning Q from Q

⌅ directions for research

– representation of value Q: data structures from games

– importance sampling proportional to the integrand, i.e. the product of policy g ·p times value Q

I On-line learning of parametric mixture models for light transport simulation

I Product importance sampling for light transport path guiding

I Fast product importance sampling of environment maps

I Learning light transport the reinforced way

I Practical path guiding for efficient light-transport simulation

18

http://cgg.mff.cuni.cz/~jaroslav/papers/2014-onlineis/index.htm
http://cgg.mff.cuni.cz/~jaroslav/papers/2016-productis/index.htm
https://dl.acm.org/citation.cfm?id=3214760
https://arxiv.org/abs/1701.07403
https://tom94.net/pages/publications/mueller17practical-erratum
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From Graphics back to Machine Learning



Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

⌅ input layer a0, L�1 hidden layers, and output layer aL

.

.

.

a0,0

a0,1

a0,2

a0,n0�1

.

.

.

a1,0

a1,1

a1,2

a1,n1�1

.

.

.

a2,0

a2,1

a2,2

a2,n2�1

.

.

.

aL,0

aL,1

aL,2

aL,nL�1

– nl rectified linear units (ReLU) al ,i =max{0,Âwl ,j ,i al�1,j} in layer l

– backpropagating the error dl�1,i = Âal ,j>0 dl ,j wl ,j ,i

20
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– nl rectified linear units (ReLU) al ,i =max{0,Âwl ,j ,i al�1,j} in layer l
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Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

⌅ example architectures

classifier

I Multilayer feedforward networks are universal approximators

I Approximation capabilities of multilayer feedforward networks

I Universal approximation bounds for superpositions of a sigmoidal function

21

https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
http://www.stat.yale.edu/~arb4/publications_files/UniversalApproximationBoundsForSuperpositionsOfASigmoidalFunction.pdf
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Artificial Neural Networks in a Nutshell

Supervised learning of high dimensional function approximation

⌅ example architectures

classifier generator auto-encoder

I Multilayer feedforward networks are universal approximators

I Approximation capabilities of multilayer feedforward networks

I Universal approximation bounds for superpositions of a sigmoidal function

21

https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
http://www.stat.yale.edu/~arb4/publications_files/UniversalApproximationBoundsForSuperpositionsOfASigmoidalFunction.pdf


Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

⌅ Q-learning

Q0(x ,w) = (1�a)Q(x ,w)+a
✓

Le(y ,�w)+
Z

S 2
+(y)

fs(wi ,y ,�w)cosqiQ(y ,wi )dwi

◆

for a = 1 yields the residual, i.e. loss

�Q := Q(x ,w)�
✓

Le(y ,�w)+
Z

S 2
+(y)

fs(wi ,y ,�w)cosqiQ(y ,wi )dwi

◆

⌅ supervised learning algorithm

– light transport paths generated by a low discrepancy sequence for online training

– learn weights of an artificial neural network for Q(x ,n) by back-propagating loss of each path

I A machine learning driven sky model

I Global illumination with radiance regression Functions

I Machine learning and integral equations

I Neural importance sampling

22

http://wrap.warwick.ac.uk/74415/
http://www.jiapingwang.com/files/shadebot_sig13.pdf
https://arxiv.org/abs/1712.06115
https://arxiv.org/abs/1808.03856
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I Machine learning and integral equations

I Neural importance sampling
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Efficient Training of Artificial Neural Networks

Using an integral equation for supervised learning

⌅ Q-learning

Q0(x ,w) = (1�a)Q(x ,w)+a
✓
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◆
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Efficient Training of Artificial Neural Networks

Learning from noisy/sampled labeled data

⌅ find set of weights q of an artificial neural network f to minimize summed loss L
– using clean targets yi and data x̂i distributed according to x̂ ⇠ p(x̂ |yi )

argminq Â
i

L(fq (x̂i ),yi )

– using targets ŷi distributed according to ŷ ⇠ p(ŷ) instead

argminq Â
i

L(fq (x̂i ), ŷi )

⇧ allows for much faster training of artificial neural networks used in simulations

⌅ amounts to learning integration and integro-approximation

I Noise2Noise: Learning image restoration without clean data

23
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Example Applications of Artificial Neural Networks in Rendering

Learning from noisy/sampled labeled data

⌅ denoising quasi-Monte Carlo rendered images

– noisy targets computed 2000⇥ faster than clean targets

24



Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

⌅ generative adversarial network (GAN)

– update discriminator D (k times) using —qd
1

m Âm
i=1

[logD(xi )+ log(1�D(G(xi )))]

– update generator G using —qg Âm
i=1

log(1�D(G(xi )))

I image source

I Tutorial on GANs

25
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Example Applications of Artificial Neural Networks in Rendering

Sampling according to a distribution given by observed data

⌅ Celebrity GAN

I Progressive growing of GANs for improved quality, stability, and variation

26
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Example Applications of Artificial Neural Networks in Rendering

Replacing simulations by learned predictions for more efficiency

⌅ much faster simulation of participating media

– hierarchical stencil of volume densities as input to the neural network

I Deep scattering: Rendering atmospheric clouds with radiance-predicting neural networks

I Learning particle physics by example: Accelerating science with generative adversarial networks

27
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Neural Networks linear in Time and Space



Neural Networks linear in Time and Space

Complexity

⌅ the brain

– about 1011 nerve cells with to up to 104 connections to others

⌅ artificial neural networks

– number of neural units

n =
L

Â
l=1

nl where nl is the number of neurons in layer l

– number of weights

nw =
L

Â
l=1

nl�1 ·nl

= c ·n

– constrain to constant number c of weights per neuron

to reach complexity linear in n
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Neural Networks linear in Time and Space

Sampling proportional to the weights of the trained neural units

⌅ partition of unit interval by sums Pk := Âk
j=1

|wj | of normalized absolute weights

0

P0

1

PmP1 P2 Pm�1

w1 w2 wm

– using a uniform random variable x 2 [0,1) to

select input i , Pi�1  x < Pi satisfying Prob({Pi�1  x < Pi}) = |wi |

⌅ in fact derivation of quantization to ternary weights in {�1,0,+1}
– integer weights result from neurons referenced more than once

– relation to drop connect and drop out

30
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Neural Networks linear in Time and Space

Sampling proportional to the weights of the trained neural units
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LeNet on MNIST

LeNet on CIFAR-10

AlexNet on CIFAR-10

Top-5 Accuracy AlexNet on ILSVRC12

Top-1 Accuracy AlexNet on ILSVRC12
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Neural Networks linear in Time and Space

Sampling paths through networks

⌅ complexity bounded by number of paths times depth L of network

⌅ application after training

– backwards random walks using sampling proportional to the weights of a neuron

– compression and quantization by importance sampling

⌅ application before training

– uniform (bidirectional) random walks to connect inputs and outputs

– sparse from scratch
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Neural Networks linear in Time and Space

Sampling paths through networks

⌅ sparse from scratch

.

.

.
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.

.

.

aL,0

aL,1

aL,2

aL,nL�1

– guaranteed connectivity

I Monte Carlo methods and neural networks
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Sampling paths through networks
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– guaranteed connectivity and coverage

I Monte Carlo methods and neural networks
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Neural Networks linear in Time and Space

Test accuracy for 4 layer feedforward network (784/300/300/10) trained sparse from scratch
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From Machine Learning to Graphics and back

Summary

⌅ light transport and reinforcement learning described by same integral equation

– learn where radiance comes from

⌅ neural networks results of linear complexity by path tracing

– ternarization and quantization of trained artificial neural networks

– sparse from scratch training
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